Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Measurement uncertainty and probability / Robin Willink.

By: Material type: TextTextPublication details: Cambridge : CUP, 2013.Description: xvii, 276 p. : illustrations ; 26 cmISBN:
  • 9781107021938 (hardback)
Subject(s): DDC classification:
  • 519.2 23 W733
Contents:
Machine generated contents note: Part I. Principles: 1. Introduction; . 2. Foundational ideas in measurement; 3. Components of error or uncertainty; 4. Foundational ideas in probability and statistics; 5. The randomization of systematic errors; 6. Beyond the standard confidence interval; Part II. Evaluation of Uncertainty: 7. Final preparation; 8. Evaluation using the linear approximation; 9. Evaluation without the linear approximations; 10. Uncertainty information fit for purpose; Part III. Related Topics: 11. Measurement of vectors and functions; 12. Why take part in a measurement comparison?; 13. Other philosophies; 14. An assessment of objective Bayesian methods; 15. A guide to the expression of uncertainty in measurement; 16. Measurement near a limit - an insoluble problem?; References; Index.
Summary: "A measurement result is incomplete without a statement of its 'uncertainty' or 'margin of error'. But what does this statement actually tell us? By examining the practical meaning of probability, this book discusses what is meant by a '95 percent interval of measurement uncertainty', and how such an interval can be calculated. The book argues that the concept of an unknown 'target value' is essential if probability is to be used as a tool for evaluating measurement uncertainty. It uses statistical concepts, such as a conditional confidence interval, to present 'extended' classical methods for evaluating measurement uncertainty. The use of the Monte Carlo principle for the simulation of experiments is described. Useful for researchers and graduate students, the book also discusses other philosophies relating to the evaluation of measurement uncertainty. It employs clear notation and language to avoid the confusion that exists in this controversial field of science"--
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Books ISI Library, Kolkata 519.2 W733 (Browse shelf(Opens below)) Available C26266
Books ISI Library, Kolkata 519.2 W733 (Browse shelf(Opens below)) Available 134849
Total holds: 0

Includes bibliographical references (pages 268-272) and index.

Machine generated contents note: Part I. Principles:
1. Introduction; .
2. Foundational ideas in measurement;
3. Components of error or uncertainty;
4. Foundational ideas in probability and statistics;
5. The randomization of systematic errors;
6. Beyond the standard confidence interval;

Part II. Evaluation of Uncertainty:
7. Final preparation;
8. Evaluation using the linear approximation;
9. Evaluation without the linear approximations;
10. Uncertainty information fit for purpose;

Part III. Related Topics:
11. Measurement of vectors and functions;
12. Why take part in a measurement comparison?;
13. Other philosophies;
14. An assessment of objective Bayesian methods;
15. A guide to the expression of uncertainty in measurement; 16. Measurement near a limit - an insoluble problem?;

References;
Index.

"A measurement result is incomplete without a statement of its 'uncertainty' or 'margin of error'. But what does this statement actually tell us? By examining the practical meaning of probability, this book discusses what is meant by a '95 percent interval of measurement uncertainty', and how such an interval can be calculated. The book argues that the concept of an unknown 'target value' is essential if probability is to be used as a tool for evaluating measurement uncertainty. It uses statistical concepts, such as a conditional confidence interval, to present 'extended' classical methods for evaluating measurement uncertainty. The use of the Monte Carlo principle for the simulation of experiments is described. Useful for researchers and graduate students, the book also discusses other philosophies relating to the evaluation of measurement uncertainty. It employs clear notation and language to avoid the confusion that exists in this controversial field of science"--

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in