MARC details
000 -LEADER |
fixed length control field |
01932cam a2200301 i 4500 |
001 - CONTROL NUMBER |
control field |
136732 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
ISI Library, Kolkata |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20160406153632.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
150219s2015 riu b 001 0 eng |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781470420246 (alk. paper) |
040 ## - CATALOGING SOURCE |
Original cataloging agency |
ISI Library |
Language of cataloging |
eng |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
510MS |
Edition number |
23 |
Item number |
Am512 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Personal name |
Etingof, Pavel. |
245 10 - TITLE STATEMENT |
Title |
Tensor categories / |
Statement of responsibility, etc |
Pavel Etingof...[et al.]. |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Place of publication, distribution, etc |
Providence : |
Name of publisher, distributor, etc |
American Mathematical Society, |
Date of publication, distribution, etc |
2015. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
xvi, 343 p. ; |
Dimensions |
27 cm. |
490 0# - SERIES STATEMENT |
Series statement |
Mathematical surveys and monographs ; |
Volume number/sequential designation |
v 205. |
504 ## - BIBLIOGRAPHY, ETC. NOTE |
Bibliography, etc |
Includes bibliographical references and index. |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
1. Abelian categories --<br/>2. Monoidal categories --<br/>3. Z₊-rings --<br/>4. Tensor categories --<br/>5. Repreentation categories of Hopf algebras --<br/>6. Finite tensor categories --<br/>7. Module categories --<br/>8. Braided categories --<br/>9. Fusion categories --<br/>Bibliography --<br/>Index. |
520 ## - SUMMARY, ETC. |
Summary, etc |
This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Algebraic topology. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Tensor fields. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Hopf algebras. |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Gelaki, Shlomo, |
Relator term |
author |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Nikshych, Dmitri, |
Relator term |
author |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Ostrik, Victor. |
Relator term |
author |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Source of classification or shelving scheme |
Dewey Decimal Classification |
Koha item type |
Books |