MARC details
000 -LEADER |
fixed length control field |
02085cam a22002658i 4500 |
001 - CONTROL NUMBER |
control field |
138311 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
ISI Library, Kolkata |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20180511120813.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
170412s2017 riu b 001 0 eng |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9780821875544 (alk. paper) |
040 ## - CATALOGING SOURCE |
Original cataloging agency |
ISI Library |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
510MS |
Edition number |
23 |
Item number |
Am512 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Personal name |
Bonk, Mario, |
Relator term |
author |
245 10 - TITLE STATEMENT |
Title |
Expanding Thurston maps / |
Statement of responsibility, etc |
Mario Bonk and Daniel Meyer. |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) |
Place of publication, distribution, etc |
Providence : |
Name of publisher, distributor, etc |
American Mathematical Society, |
Date of publication, distribution, etc |
©2017. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
xv, 478 pages : |
Other physical details |
illustrations ; |
Dimensions |
27 cm. |
490 0# - SERIES STATEMENT |
Series statement |
Mathematical surveys and monographs ; |
Volume number/sequential designation |
v 225. |
504 ## - BIBLIOGRAPHY, ETC. NOTE |
Bibliography, etc |
Includes bibliographical references and index. |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
1. Introduction --<br/>2. Thurston maps --<br/>3. Lattes maps --<br/>4. Quasiconformal and rough geometry --<br/>5. Cell decompositions --<br/>6.Expansion --<br/>7. Thurston maps with two or three postcritical points --<br/>8. Visual metrics --<br/>9. Symbolic dynamics --<br/>10. Tile graphs --<br/>11. Isotopies --<br/>12. Subdivisions --<br/>13. Quotients of Thurston maps --<br/>14. Combinatorially expanding Thurston maps --<br/>15. Invariant curves --<br/>16. The combinatorial expansion factor --<br/>17. The measure of maximal entropy --<br/>18. The geometry of the visual sphere --<br/>19. Rational Thurston maps and Lebesgue measure --<br/>20. A combinatorial characterization of Lattes maps --<br/>21. Outlook and open problems --<br/>Appendix A --<br/>Bibliography --<br/>Index. |
520 ## - SUMMARY, ETC. |
Summary, etc |
This monograph is devoted to the study of the dynamics of expanding Thurston maps under iteration. A Thurston map is a branched covering map on a two-dimensional topological sphere such that each critical point of the map has a finite orbit under iteration. It is called expanding if, roughly speaking, preimages of a fine open cover of the underlying sphere under iterates of the map become finer and finer as the order of the iterate increases. Every expanding Thurston map gives rise to a fractal space, called its visual sphere. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Algebraic topology. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Topical term or geographic name as entry element |
Mappings (Mathematics) |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Meyer, Daniel, |
Relator term |
author |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Source of classification or shelving scheme |
Dewey Decimal Classification |
Koha item type |
Books |