Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Introduction to graphene-based nanomaterials : from electronic structure to quantum transport / Luis E. F. Foa Torres, Stephan Roche and Jean-Christophe Charlier.

By: Contributor(s): Material type: TextTextPublication details: New York : Cambridge University Press, 2014.Description: xiii, 409 p. : illustrations ; 26 cmISBN:
  • 9781107030831 (hardback)
Subject(s): DDC classification:
  • 620.115 23 F649
Contents:
1. Introduction to carbon-based nanostructures; 2. Electronic properties of carbon-based nanostructures; 3. Quantum transport: general concepts; 4. Klein tunnelling and ballistic transport in graphene and related materials; 5. Quantum transport in disordered graphene-based materials; 6. Quantum transport beyond DC; 7. Ab initio and multiscale quantum transport in graphene-based materials; 8. Applications; Appendix A. Electronic structure calculations: the density functional theory; Appendix B. Electronic structure calculations: the many-body perturbation theory; Appendix C. Green's functions and ab initio quantum transport in the Landauer-Büttiker formalism; Appendix D. Recursion methods for computing DOS and wavepacket dynamics; References; Index.
Summary: "Beginning with an introduction to carbon-based nanomaterials, their electronic properties, and general concepts in quantum transport, this detailed primer describes the most effective theoretical and computational methods and tools for simulating the electronic structure and transport properties of graphene-based systems. Transport concepts are clearly presented through simple models, enabling comparison with analytical treatments, and multiscale quantum transport methodologies are introduced and developed in a straightforward way, demonstrating a range of methods for tackling the modelling of defects and impurities in more complex graphene-based materials. The authors also discuss the practical applications of this revolutionary nanomaterial, contemporary challenges in theory and simulation, and long-term perspectives. Containing numerous problems for solution, real-life examples of current research, and accompanied online by further exercises, solutions and computational codes, this is the perfect introductory resource for graduate students and researchers in nanoscience and nanotechnology, condensed matter physics, materials science and nanoelectronics"--
Tags from this library: No tags from this library for this title. Log in to add tags.

Includes bibliographical references and index.

1. Introduction to carbon-based nanostructures;
2. Electronic properties of carbon-based nanostructures;
3. Quantum transport: general concepts;
4. Klein tunnelling and ballistic transport in graphene and related materials;
5. Quantum transport in disordered graphene-based materials; 6. Quantum transport beyond DC;
7. Ab initio and multiscale quantum transport in graphene-based materials;
8. Applications;
Appendix A. Electronic structure calculations: the density functional theory;
Appendix B. Electronic structure calculations: the many-body perturbation theory;
Appendix C. Green's functions and ab initio quantum transport in the Landauer-Büttiker formalism;
Appendix D. Recursion methods for computing DOS and wavepacket dynamics;

References;
Index.

"Beginning with an introduction to carbon-based nanomaterials, their electronic properties, and general concepts in quantum transport, this detailed primer describes the most effective theoretical and computational methods and tools for simulating the electronic structure and transport properties of graphene-based systems. Transport concepts are clearly presented through simple models, enabling comparison with analytical treatments, and multiscale quantum transport methodologies are introduced and developed in a straightforward way, demonstrating a range of methods for tackling the modelling of defects and impurities in more complex graphene-based materials. The authors also discuss the practical applications of this revolutionary nanomaterial, contemporary challenges in theory and simulation, and long-term perspectives. Containing numerous problems for solution, real-life examples of current research, and accompanied online by further exercises, solutions and computational codes, this is the perfect introductory resource for graduate students and researchers in nanoscience and nanotechnology, condensed matter physics, materials science and nanoelectronics"--

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in