Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Amazon cover image
Image from Amazon.com

Hangzhou lectures on eigenfunctions of the Laplacian / Christopher D. Sogge.

By: Material type: TextTextSeries: Annals of mathematics studies ; no 188.Publication details: Princeton : Princeton University Press, 2014.Description: x, 193 p. ; 26 cmISBN:
  • 9780691160788 (pbk. : alk. paper)
Subject(s): DDC classification:
  • 515.3533 23 So682
Contents:
1. A review : the Laplacian and the d'Alembertian -- 2. Geodesics and the Hadamard paramatrix -- 3. The sharp Weyl formula -- 4. Stationary phase and microlocal analysis -- 5. Improved spectral asymptotics and periodic geodesics -- 6. Classical and quantum ergodicity -- Appendix -- Notes -- Bibliography -- Index -- Symbol glossary.
Summary: This book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic. Sogge begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. He avoids the use of Tauberian estimates and instead relies on sup-norm estimates for eigenfunctions. The author also gives a rapid introduction to the stationary phase and the basics of the theory of pseudodifferential operators and microlocal analysis. These are used to prove the Duistermaat-Guillemin theorem. Turning to the related topic of quantum ergodicity, Sogge demonstrates that if the long-term geodesic flow is uniformly distributed, most eigenfunctions exhibit a similar behavior, in the sense that their mass becomes equidistributed as their frequencies go to infinity.
Tags from this library: No tags from this library for this title. Log in to add tags.

Includes bibliographical references and index.

1. A review : the Laplacian and the d'Alembertian --
2. Geodesics and the Hadamard paramatrix --
3. The sharp Weyl formula --
4. Stationary phase and microlocal analysis --
5. Improved spectral asymptotics and periodic geodesics --
6. Classical and quantum ergodicity --
Appendix --
Notes --
Bibliography --
Index --
Symbol glossary.

This book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic. Sogge begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. He avoids the use of Tauberian estimates and instead relies on sup-norm estimates for eigenfunctions. The author also gives a rapid introduction to the stationary phase and the basics of the theory of pseudodifferential operators and microlocal analysis. These are used to prove the Duistermaat-Guillemin theorem. Turning to the related topic of quantum ergodicity, Sogge demonstrates that if the long-term geodesic flow is uniformly distributed, most eigenfunctions exhibit a similar behavior, in the sense that their mass becomes equidistributed as their frequencies go to infinity.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in