Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

K3 surfaces and their moduli / [edited by] Carel Faber, Gavril Farkas and Gerard van der Geer.

Contributor(s): Material type: TextTextSeries: Progress in mathematics ; v 315.Publication details: Switzerland : Springer, 2016.Description: ix, 399 pages : illustrations ; 24 cmISBN:
  • 9783319299587 (alk. paper)
Subject(s): DDC classification:
  • 516.35 23 F115
Contents:
Introduction.-Samuel Boissiere, Andrea Cattaneo, MarcNieper-Wisskirchen, and Alessandra Sarti: The automorphism group of theHilbert scheme of two points on a generic projective K3 surface.- Igor Dolgachev: Orbital counting ofcurves on algebraic surfaces and sphere packings.- V. Gritsenko and K. Hulek: Moduli of polarized Enriques surfaces.- Brendan Hassett and Yuri Tschinkel: Extremalrays and automorphisms of holomorphic symplectic varieties.- Gert Heckman and Sander Rieken: An oddpresentation for W(E_6).- S. Katz, A.Klemm, and R. Pandharipande, with an appendix by R. P. Thomas: On themotivic stable pairs invariants of K3 surfaces.- Shigeyuki Kondo: The Igusa quartic and Borcherds products.- Christian Liedtke: Lectures onsupersingular K3 surfaces and the crystalline Torelli theorem.- Daisuke Matsushita: On deformations ofLagrangian fibrations.- G. Oberdieck andR. Pandharipande: Curve counting on K3 x E, the Igusa cusp form X_10, anddescendent integration.- Keiji Oguiso:Simple abelian varieties and primitive automorphisms of null entropy ofsurfaces.- Ichiro Shimada: Theautomorphism groups of certain singular K3 surfaces and an Enriques surface.- Alessandro Verra: Geometry of genus 8Nikulin surfaces and rationality of their moduli.- Claire Voisin: Remarks and questions on coisotropic subvarietiesand 0-cycles of hyper-Kahler varieties.
Summary: This book provides an overview of the latest developments concerning the moduli of K3 surfaces. It is aimed at algebraic geometers, but is also of interest to number theorists and theoretical physicists, and continues the tradition of related volumes like “The Moduli Space of Curves” and “Moduli of Abelian Varieties,” which originated from conferences on the islands Texel and Schiermonnikoog and which have become classics. K3 surfaces and their moduli form a central topic in algebraic geometry and arithmetic geometry, and have recently attracted a lot of attention from both mathematicians and theoretical physicists. Advances in this field often result from mixing sophisticated techniques from algebraic geometry, lattice theory, number theory, and dynamical systems. The topic has received significant impetus due to recent breakthroughs on the Tate conjecture, the study of stability conditions and derived categories, and links with mirror symmetry and string theory. At the same time, the theory of irreducible holomorphic symplectic varieties, the higher dimensional analogues of K3 surfaces, has become a mainstream topic in algebraic geometry.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Books ISI Library, Kolkata 516.35 F115 (Browse shelf(Opens below)) Available 137994
Total holds: 0

Includes bibliographical references.

Introduction.-Samuel Boissiere, Andrea Cattaneo, MarcNieper-Wisskirchen, and Alessandra Sarti: The automorphism group of theHilbert scheme of two points on a generic projective K3 surface.- Igor Dolgachev: Orbital counting ofcurves on algebraic surfaces and sphere packings.- V. Gritsenko and K. Hulek: Moduli of polarized Enriques surfaces.- Brendan Hassett and Yuri Tschinkel: Extremalrays and automorphisms of holomorphic symplectic varieties.- Gert Heckman and Sander Rieken: An oddpresentation for W(E_6).- S. Katz, A.Klemm, and R. Pandharipande, with an appendix by R. P. Thomas: On themotivic stable pairs invariants of K3 surfaces.- Shigeyuki Kondo: The Igusa quartic and Borcherds products.- Christian Liedtke: Lectures onsupersingular K3 surfaces and the crystalline Torelli theorem.- Daisuke Matsushita: On deformations ofLagrangian fibrations.- G. Oberdieck andR. Pandharipande: Curve counting on K3 x E, the Igusa cusp form X_10, anddescendent integration.- Keiji Oguiso:Simple abelian varieties and primitive automorphisms of null entropy ofsurfaces.- Ichiro Shimada: Theautomorphism groups of certain singular K3 surfaces and an Enriques surface.- Alessandro Verra: Geometry of genus 8Nikulin surfaces and rationality of their moduli.- Claire Voisin: Remarks and questions on coisotropic subvarietiesand 0-cycles of hyper-Kahler varieties.

This book provides an overview of the latest developments concerning the moduli of K3 surfaces. It is aimed at algebraic geometers, but is also of interest to number theorists and theoretical physicists, and continues the tradition of related volumes like “The Moduli Space of Curves” and “Moduli of Abelian Varieties,” which originated from conferences on the islands Texel and Schiermonnikoog and which have become classics.
K3 surfaces and their moduli form a central topic in algebraic geometry and arithmetic geometry, and have recently attracted a lot of attention from both mathematicians and theoretical physicists. Advances in this field often result from mixing sophisticated techniques from algebraic geometry, lattice theory, number theory, and dynamical systems. The topic has received significant impetus due to recent breakthroughs on the Tate conjecture, the study of stability conditions and derived categories, and links with mirror symmetry and string theory. At the same time, the theory of irreducible holomorphic symplectic varieties, the higher dimensional analogues of K3 surfaces, has become a mainstream topic in algebraic geometry.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in