Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Complex surveys : analysis of categorical data / Parimal Mukhopadhyay.

By: Material type: TextTextPublication details: Singapore : Spinger, 2016.Description: xv, 248 pages ; 24 cmISBN:
  • 9789811008702
Subject(s): DDC classification:
  • 000SA.08 23 M953
Contents:
Chapter 1. Preliminaries -- Chapter 2. The Design-Effects and Mis-Specification Effects -- Chapter 3. Some Classical Models in Categorical Data Analysis -- Chapter 4. Analysis of Categorical Data under a Full Model -- Chapter 5. Analysis of Categorical Data under Log-Linear Models -- Chapter 6. Analysis of Categorical Data under Logistic Regression Model -- Chapter 7. Analysis in the Presence of Classification Errors -- Chapter 8. Approximate MLE’s from Survey Data.
Summary: The primary objective of this book is to study some of the research topics in the area of analysis of complex surveys which have not been covered in any book yet. It discusses the analysis of categorical data using three models: a full model, a log-linear model and a logistic regression model. It is a valuable resource for survey statisticians and practitioners in the field of sociology, biology, economics, psychology and other areas who have to use these procedures in their day-to-day work. It is also useful for courses on sampling and complex surveys at the upper-undergraduate and graduate levels. The importance of sample surveys today cannot be overstated. From voters' behaviour to fields such as industry, agriculture, economics, sociology, psychology, investigators generally resort to survey sampling to obtain an assessment of the behaviour of the population they are interested in. Many large-scale sample surveys collect data using complex survey designs like multistage stratified cluster designs. The observations using these complex designs are not independently and identically distributed - an assumption on which the classical procedures of inference are based. This means that if classical tests are used for the analysis of such data, the inferences obtained will be inconsistent and often invalid. For this reason, many modified test procedures have been developed for this purpose over the last few decades.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Books ISI Library, Kolkata ISI Scientist Publication 000SA.08 M953 (Browse shelf(Opens below)) Available 137763
Total holds: 0

Includes bibliographical references.

Chapter 1. Preliminaries --
Chapter 2. The Design-Effects and Mis-Specification Effects --
Chapter 3. Some Classical Models in Categorical Data Analysis --
Chapter 4. Analysis of Categorical Data under a Full Model --
Chapter 5. Analysis of Categorical Data under Log-Linear Models --
Chapter 6. Analysis of Categorical Data under Logistic Regression Model --
Chapter 7. Analysis in the Presence of Classification Errors --
Chapter 8. Approximate MLE’s from Survey Data.

The primary objective of this book is to study some of the research topics in the area of analysis of complex surveys which have not been covered in any book yet. It discusses the analysis of categorical data using three models: a full model, a log-linear model and a logistic regression model. It is a valuable resource for survey statisticians and practitioners in the field of sociology, biology, economics, psychology and other areas who have to use these procedures in their day-to-day work. It is also useful for courses on sampling and complex surveys at the upper-undergraduate and graduate levels. The importance of sample surveys today cannot be overstated. From voters' behaviour to fields such as industry, agriculture, economics, sociology, psychology, investigators generally resort to survey sampling to obtain an assessment of the behaviour of the population they are interested in. Many large-scale sample surveys collect data using complex survey designs like multistage stratified cluster designs. The observations using these complex designs are not independently and identically distributed - an assumption on which the classical procedures of inference are based. This means that if classical tests are used for the analysis of such data, the inferences obtained will be inconsistent and often invalid. For this reason, many modified test procedures have been developed for this purpose over the last few decades.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in