Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Handbook of big data / [edited by] Peter Buhlmann...[et al.].

Contributor(s): Material type: TextTextSeries: Chapman & Hall/CRC handbooks of modern statistical methodsPublication details: Boca Raton : CRC Press, ©2016.Description: xvi, 464 pages : illustrations (some color) ; 26 cmISBN:
  • 9781482249071
Subject(s): Genre/Form: DDC classification:
  • 005.7 23 B931
Contents:
1. The advent of data science: some considerations on the unreasonable effectiveness of data / Richard J.C.M. Starmans -- 2. Big-n versus big-p in big data / Norman Matloff -- 3. Divide and recombine: approach for detailed analysis and visualization of large complex data / Ryan Hafen -- 4. Integrate big data for better operation, control, and protection of power systems / Guang Lin -- 5. Interactive visual analysis of big data / Carlos Scheidegger -- 6. A visualization tool for mining large correlation tables: the association navigator / Andreas Buja, Abba M. Krieger, and Edward I. George -- 7. High-dimensional computational geometry / Alexandr Andoni -- 8. IRLBA: fast partial singular value decomposition method / James Baglama -- 9. Structural properties underlying high-quality randomized numerical linear algebra algorithms / Michael W. Mahoney and Petros Drineas -- 10. Something for (almost) nothing: new advances in sublinear-time algorithms / Ronitt Rubinfeld and Eric Blais -- 11. Networks / Elizabeth L. Ogburn and Alexander Volfovsky -- 12. Mining large graphs / David F. Gleich and Michael W. Mahoney -- 13. Estimator and model selection using cross-validation / Ivan Diaz -- 14. Stochastic gradient methods for principled estimation with large datasets / Panos Toulis and Edoardo M. Airoldi -- 15. Learning structured distributions / Ilias Diakonikolas -- 16. Penalized estimation in complex methods / Jacob Bien and Daniela Witten -- 17. High-dimensional regression and inference / Lukas Meier -- 18. Divide and recombine: subsemble, exploiting the power of cross-validation / Stephanie Sapp and Erin LeDell -- 19. Scalable super learning / Erin LeDell -- 20. Tutorial for causal inference / Laura Balzer, Maya Petersen, and Mark van der Laan -- 21. A review of some recent advances in causal inference / Marloes H. Maathuis and Preetam Nandy -- 22. Targeted learning for variable importance / Sherri Rose -- 23. Online estimation of the average treatment effect / Sam Lendle -- 24. Mining with inference: data-adaptive target parameters / Alan Hubbard and Mark van der Laan.
Summary: Handbook of Big Data provides a state-of-the-art overview of the analysis of large-scale datasets. Featuring contributions from well-known experts in statistics and computer science, this handbook presents a carefully curated collection of techniques from both industry and academia. Thus, the text instills a working understanding of key statistical and computing ideas that can be readily applied in research and practice.
Tags from this library: No tags from this library for this title. Log in to add tags.

Includes bibliographical references and index.

1. The advent of data science: some considerations on the unreasonable effectiveness of data / Richard J.C.M. Starmans --
2. Big-n versus big-p in big data / Norman Matloff --
3. Divide and recombine: approach for detailed analysis and visualization of large complex data / Ryan Hafen --
4. Integrate big data for better operation, control, and protection of power systems / Guang Lin --
5. Interactive visual analysis of big data / Carlos Scheidegger --
6. A visualization tool for mining large correlation tables: the association navigator / Andreas Buja, Abba M. Krieger, and Edward I. George --
7. High-dimensional computational geometry / Alexandr Andoni --
8. IRLBA: fast partial singular value decomposition method / James Baglama --
9. Structural properties underlying high-quality randomized numerical linear algebra algorithms / Michael W. Mahoney and Petros Drineas --
10. Something for (almost) nothing: new advances in sublinear-time algorithms / Ronitt Rubinfeld and Eric Blais --
11. Networks / Elizabeth L. Ogburn and Alexander Volfovsky --
12. Mining large graphs / David F. Gleich and Michael W. Mahoney --
13. Estimator and model selection using cross-validation / Ivan Diaz --
14. Stochastic gradient methods for principled estimation with large datasets / Panos Toulis and Edoardo M. Airoldi --
15. Learning structured distributions / Ilias Diakonikolas --
16. Penalized estimation in complex methods / Jacob Bien and Daniela Witten --
17. High-dimensional regression and inference / Lukas Meier --
18. Divide and recombine: subsemble, exploiting the power of cross-validation / Stephanie Sapp and Erin LeDell --
19. Scalable super learning / Erin LeDell --
20. Tutorial for causal inference / Laura Balzer, Maya Petersen, and Mark van der Laan --
21. A review of some recent advances in causal inference / Marloes H. Maathuis and Preetam Nandy --
22. Targeted learning for variable importance / Sherri Rose --
23. Online estimation of the average treatment effect / Sam Lendle --
24. Mining with inference: data-adaptive target parameters / Alan Hubbard and Mark van der Laan.

Handbook of Big Data provides a state-of-the-art overview of the analysis of large-scale datasets. Featuring contributions from well-known experts in statistics and computer science, this handbook presents a carefully curated collection of techniques from both industry and academia. Thus, the text instills a working understanding of key statistical and computing ideas that can be readily applied in research and practice.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in