Data mining and data warehousing : principles and practical techniques / Parteek Bhatia.
Material type:
- 9781108727747
- 006.312 23 B575
Item type | Current library | Call number | Status | Notes | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Books | ISI Library, Kolkata | 006.312 B575 (Browse shelf(Opens below)) | Available | Gifted by the Author of this book. | C26651 |
Browsing ISI Library, Kolkata shelves Close shelf browser (Hides shelf browser)
006.312 An549 Visual data mining : | 006.312 B213 Text mining with MATLAB / | 006.312 B534 Text mining | 006.312 B575 Data mining and data warehousing : | 006.312 B782 Graphical models: representations for learning, reasoning and data mining/ | 006.312 B815 Principles of data mining / | 006.312 C235 Domain driven data mining |
Includes bibliographical references and index.
Beginning with machine learning --
Introduction to data mining --
Beginning with Weka and R language --
Data preprocessing --
Classification --
Implementing classification in Weka and R --
Cluster analysis --
Implementing clustering with Weka and R --
Association mining --
Implementing association mining with Weka and R --
Web mining and search engines --
Data warehouse --
Data warehouse schema --
Online analytical processing --
Big data and NoSQL.
"This textbook is written to cater to the needs of undergraduate students of computer science, engineering, and information technology for a course on data mining and data warehousing. It brings together fundamental concepts of data mining and data warehousing in a single volume. Important topics including information theory, decision tree, Naïve Bayes classifier, distance metrics, partitioning clustering, associate mining, data marts and operational data store are discussed comprehensively. The text simplifies the understanding of the concepts through exercises and practical examples. Chapters such as classification, associate mining and cluster analysis are discussed in detail with their practical implementation using Weka and R language data mining tools. Advanced topics including big data analytics, relational data models, and NoSQL are discussed in detail. Unsolved problems and multiple-choice questions are interspersed throughout the book for better understanding"--
There are no comments on this title.