Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

C∗-extreme Maps and Nest Algebras/ Manish Kumar

By: Material type: TextTextPublication details: Bangalore: Indian Statistical Institute, 2022Description: viii, 140 pagesSubject(s): DDC classification:
  • 23 512.55 K96
Online resources:
Contents:
Introduction -- 1 Preliminaries -- 1.1 C∗-algebras -- 1.2 Completely positive maps -- 1.3 Positive operator valued measures -- 1.4 Correspondence between CP maps and POVMs -- 1.5 Nest algebras and factorization property -- 2 C∗-convexity Structure of Generalized State Spaces -- 2.1 Definitions and general properties -- 2.2 Abstract characterizations of C∗-extreme maps -- 2.3 Direct sums of pure UCP maps -- 2.4 Krein-Milman type theorem for UCP maps on separable C∗-algebras 2.5 Examples and applications -- 3 Normal C∗-extreme Maps -- 3.1 Normal C∗-extreme maps on type I factors -- 3.2 Krein-Milman type theorem for UCP maps on type I factors -- 3.3 Examples of normal C∗-extreme maps -- 4 C∗-extreme Positive Operator Valued Measures -- 4.1 General Properties of C∗-extreme POVMs -- 4.2 C∗-extreme POVMs with commutative ranges -- 4.3 Atomic C∗-extreme POVMs -- 4.4 Singular POVMs and their direct sums -- 4.5 Measure Isomorphic POVMs -- 5 C∗-extreme Maps on Commutative C∗-algebras -- 5.1 Regular atomic and non-atomic POVMs -- 5.2 Regular C∗-extreme POVMs -- 5.3 Krein-Milman type theorem for PH(X) -- 5.4 Applications to UCP Maps on C(X) -- 6 Logmodular Algebras -- 6.1 Definitions and examples -- 6.2 Lattices of logmodular algebras -- 6.3 Proof of the main result -- 6.4 Reflexivity of algebras with factorization -- Open Problems
Production credits:
  • Guided by Prof. B. V. Rajarama Bhat
Dissertation note: Thesis (Ph.D.) - Indian Statistical Institute, 2022
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Notes Date due Barcode Item holds
THESIS ISI Library, Kolkata 512.55 K96 (Browse shelf(Opens below)) Available E-Thesis TH524
Total holds: 0

Thesis (Ph.D.) - Indian Statistical Institute, 2022

Includes bibliographical references and index

Introduction --
1 Preliminaries -- 1.1 C∗-algebras -- 1.2 Completely positive maps -- 1.3 Positive operator valued measures -- 1.4 Correspondence between CP maps and POVMs -- 1.5 Nest algebras and factorization property --
2 C∗-convexity Structure of Generalized State Spaces -- 2.1 Definitions and general properties -- 2.2 Abstract characterizations of C∗-extreme maps -- 2.3 Direct sums of pure UCP maps -- 2.4 Krein-Milman type theorem for UCP maps on separable C∗-algebras
2.5 Examples and applications --
3 Normal C∗-extreme Maps --
3.1 Normal C∗-extreme maps on type I factors -- 3.2 Krein-Milman type theorem for UCP maps on type I factors -- 3.3 Examples of normal C∗-extreme maps --
4 C∗-extreme Positive Operator Valued Measures -- 4.1 General Properties of C∗-extreme POVMs -- 4.2 C∗-extreme POVMs with commutative ranges -- 4.3 Atomic C∗-extreme POVMs -- 4.4 Singular POVMs and their direct sums -- 4.5 Measure Isomorphic POVMs --
5 C∗-extreme Maps on Commutative C∗-algebras -- 5.1 Regular atomic and non-atomic POVMs -- 5.2 Regular C∗-extreme POVMs -- 5.3 Krein-Milman type theorem for PH(X) -- 5.4 Applications to UCP Maps on C(X) --
6 Logmodular Algebras -- 6.1 Definitions and examples -- 6.2 Lattices of logmodular algebras -- 6.3 Proof of the main result -- 6.4 Reflexivity of algebras with factorization --
Open Problems

Guided by Prof. B. V. Rajarama Bhat

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in