TY - BOOK AU - Ambrosius,Walter T. TI - Topics in biostatistics T2 - Methods in molecular biology SN - 9788184894271 U1 - 000SB:570 23 PY - 2010/// CY - New Delhi PB - Humana Press KW - Biometry KW - Methodology. KW - methods. KW - Informatics N1 - Includes index; 1. Study design: the basics / Hyun Ja Lim and Raymond G. Hoffmann -- 2. Observational study design / Raymond G. Hoffmann and Hyun Ja Lim -- 3. Descriptive statistics / Todd G. Nick -- 4. Basic principles of statistical inference / Wanzhu Tu -- 5. Statistical inference on categorical variables / Susan M. Perkins -- 6. Development and evaluation of classifiers / Todd A. Alonzo and Margaret Sullivan Pepe -- 7. Comparison of means / Nancy Berman -- 8. Correlation and simple linear regression / Lynn E. Eberly -- 9. Multiple linear regression / Lynn E. Eberly -- 10. General linear models / Edward H. Ip -- 11. Linear mixed effects models / Ann L. Oberg and Douglas W. Mahoney -- 12. Design and analysis of experiments / Jonathan J. Shuster -- 13. Analysis of change / James J. Grady -- 14. Logistic regression / Todd G. Nick and Kathleen M. Campbell -- 15. Survival analysis / Hongyu Jiang and Jason P. Fine -- 16. Basic Bayesian methods / Mark E. Glickman and David A. van Dyk -- 17. Overview of missing data techniques / Ralph B. D'agostino, Jr. -- 18. Statistical topics in the laboratory sciences / Curtis A. Parvin -- 19. Power and sample size / L. Douglas Case and Walter T. Ambrosius -- 20. Microarray analysis / Grier P. Page [and others] -- 21. Association methods in human genetics / Carl D. Langefeld and Tasha E. Fingerlin -- 22. Genome mapping statistics and bioinformatics / Josyf C. Mychaleckyj -- 23. Working with a statistician / Nancy Berman and Christina Gullion-- Index N2 - Presents a multidisciplinary survey of biostatics methods, each illustrated with hands-on examples. Methods range from the elementary, including descriptive statistics, study design, statistical interference, categorical variables, evaluation of diagnostic tests, comparison of means, linear regression, and logistic regression. These introductory methods create a portfolio of biostatistical techniques for both novice and expert researchers. More complicated statistical methods are introduced as well, including those requiring either collaboration with a biostatistician or the use of a statistical package. Specific topics of interest include microarray analysis, missing data techniques, power and sample size, statistical methods in genetics. ER -