TY - BOOK AU - Isaacs,I.Martin TI - Algebra : : a graduate course T2 - Graduate studies in mathematics SN - 9780821852149 U1 - 512 23 PY - 2010/// CY - Providence PB - American Mathematical Society KW - Algebra N1 - Includes bibliographical references and index; Chapter 1. Definitions and examples of groups -- Chapter 2. Subgroups and cosets -- Chapter 3. Homomorphisms -- Chapter 4. Group actions -- Chapter 5. The Sylow theorems and p-groups -- Chapter 6. Permutation groups -- Chapter 7. New groups from old -- Chapter 8. Solvable and nilpotent groups -- Chapter 9. Transfer -- Chapter 10. Operator groups and unique decompositions -- Chapter 11. Module theory without rings -- Chapter 12. Rings, ideals, and modules -- Chapter 13. Simple modules and primitive rings -- Chapter 14. Artinian rings and projective modules -- Chapter 15. An introduction to character theory -- Chapter 16. Polynomial rings, PIDs, and UFDs -- Chapter 17. Field extensions -- Chapter 18. Galois theory -- Chapter 19. Separability and inseparability -- Chapter 20. Cyclotomy and geometric constructions -- Chapter 21. Finite fields -- Chapter 22. Roots, radicals, and real numbers -- Chapter 23. Norms, traces, and discriminants -- Chapter 24. Transcendental extensions -- Chapter 25. the Artin-Schreier theorem -- Chapter 26. Ideal theory -- Chapter 27. Noetherian rings -- Chapter 28. Integrality -- Chapter 29. Dedekind domains -- Chapter 30. Algebraic sets and the Nullstellensatz N2 - This book, contains more than enough material for a two-semester graduate-level abstract algebra course, including groups, rings and modules, fields and Galois theory, an introduction to algebraic number theory, and the rudiments of algebraic geometry. This book could be used for self study as well as for a course text, and so full details of almost all proofs are included. There are hundreds of problems, many being far from trivial ER -