TY - BOOK AU - Buhlmann,Peter AU - Drineas,Petros AU - Kane,Michael AU - Laan,Mark van der TI - Handbook of big data T2 - Chapman & Hall/CRC handbooks of modern statistical methods SN - 9781482249071 U1 - 005.7 23 PY - 2016/// CY - Boca Raton : PB - CRC Press, KW - Big data KW - Statistical methods KW - Handbooks, manuals, etc KW - Handbooks and manuals KW - lcgft N1 - Includes bibliographical references and index; 1. The advent of data science: some considerations on the unreasonable effectiveness of data / Richard J.C.M. Starmans -- 2. Big-n versus big-p in big data / Norman Matloff -- 3. Divide and recombine: approach for detailed analysis and visualization of large complex data / Ryan Hafen -- 4. Integrate big data for better operation, control, and protection of power systems / Guang Lin -- 5. Interactive visual analysis of big data / Carlos Scheidegger -- 6. A visualization tool for mining large correlation tables: the association navigator / Andreas Buja, Abba M. Krieger, and Edward I. George -- 7. High-dimensional computational geometry / Alexandr Andoni -- 8. IRLBA: fast partial singular value decomposition method / James Baglama -- 9. Structural properties underlying high-quality randomized numerical linear algebra algorithms / Michael W. Mahoney and Petros Drineas -- 10. Something for (almost) nothing: new advances in sublinear-time algorithms / Ronitt Rubinfeld and Eric Blais -- 11. Networks / Elizabeth L. Ogburn and Alexander Volfovsky -- 12. Mining large graphs / David F. Gleich and Michael W. Mahoney -- 13. Estimator and model selection using cross-validation / Ivan Diaz -- 14. Stochastic gradient methods for principled estimation with large datasets / Panos Toulis and Edoardo M. Airoldi -- 15. Learning structured distributions / Ilias Diakonikolas -- 16. Penalized estimation in complex methods / Jacob Bien and Daniela Witten -- 17. High-dimensional regression and inference / Lukas Meier -- 18. Divide and recombine: subsemble, exploiting the power of cross-validation / Stephanie Sapp and Erin LeDell -- 19. Scalable super learning / Erin LeDell -- 20. Tutorial for causal inference / Laura Balzer, Maya Petersen, and Mark van der Laan -- 21. A review of some recent advances in causal inference / Marloes H. Maathuis and Preetam Nandy -- 22. Targeted learning for variable importance / Sherri Rose -- 23. Online estimation of the average treatment effect / Sam Lendle -- 24. Mining with inference: data-adaptive target parameters / Alan Hubbard and Mark van der Laan N2 - Handbook of Big Data provides a state-of-the-art overview of the analysis of large-scale datasets. Featuring contributions from well-known experts in statistics and computer science, this handbook presents a carefully curated collection of techniques from both industry and academia. Thus, the text instills a working understanding of key statistical and computing ideas that can be readily applied in research and practice ER -