000 02143cam a2200241 a 4500
001 4522120
003 ISI Library, Kolkata
005 20250820020010.0
008 990413s1999 ilua b 001 0 eng
020 _a0226511839 (pbk. : alk. paper)
040 _aISI Library
082 0 0 _a514.2
_223
_bM466
100 1 _aMay, J. P.
245 1 2 _aConcise course in algebraic topology /
_cJ.P. May.
260 _aChicago :
_bUniversity of Chicago Press,
_cc1999.
300 _aix, 243 p. :
_bill. ;
_c24 cm.
490 _aChicago lectures in mathematics
504 _aIncludes bibliographical references and index.
505 _aChapter 1. The fundamental group and some of its applications-- Chapter 2. Categorical language and the van Kampen theorem-- Chapter 3. Covering spaces-- Chapter 4. Graphs-- Chapter 5. Compactly generated spaces-- Chapter 6. Cofibrations-- Chapter 7. Fribrations-- Chapter 8. Based cofiber and fiber sequences-- Chapter 9. Higher homotopy groups-- Chapter 10. CW complexes-- Chapter 11. The homotopy excision and suspension theorems-- Chapter 12. A little homological algebra-- Chapter 13. Axiomatic and cellular homology theory-- Chapter 14. Derivations of properties from the axioms-- Chapter 15. The Hurewicz and uniqueness theorems-- Chapter 16. Singular homology theory-- Chapter 17. Some more homological algebra-- Chapter 18. Axiomatic and cellular cohomology theory-- Chapter 19. Derivations of properties from the axioms-- Chapter 20. The Poincare duality theorem-- Chapter 21. The index of manifolds; manifolds with boundary-- Chapter 22. Homology, cohomology, and Ks-- Chapter 23. Characteristic classes of vector bundles-- Chapter 24. An introduction to K-theory-- Chapter 25. An introduction to cobordism-- Suggestions for further reading-- Index.
520 _aProvides a treatment of algebraic topology that reflects the enormous internal developments within the field and retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented.
650 0 _aAlgebraic topology.
942 _2ddc
_cBK
_05
999 _c418825
_d418825