000 02558cam a22002898i 4500
001 135870
003 ISI Library, Kolkata
005 20150616115127.0
008 140225s2014 riu b 000 0 eng
010 _a 2014006823
020 _a9781470415228 (alk. paper)
040 _aISI Library
082 _a510MS
_223
_bAm512
100 1 _aSchwartz, Richard Evan.
245 1 4 _aOctogonal PETs /
_cRichard Evan Schwartz.
246 3 _aOctogonal polytope exchange transformations
260 _aProvidence :
_bAmerican Mathematical Society,
_cc2014.
300 _ax, 212 p. :
_billustrations (some color) ;
_c26 cm.
490 0 _aMathematical surveys and monographs ;
_vv 197
504 _aIncludes bibliographical references.
505 0 _a1. Introduction -- 2. Background -- 3. Multigraph PETs -- 4. The alternating grid system -- 5. Outer billiards on semiregular octagons -- 6. Quarter turn compositions -- 7. Elementary properties -- 8. Orbit stability and combinatorics -- 9. Bilateral symmetry -- 10. Proof of the main theorem -- 11. The renormalization map -- 12. Properties of the tiling -- 13. The filling lemma -- 14. The covering lemma -- 15. Further geometric results -- 16. Properties of the limit set -- 17. Hausdorff convergence -- 18. Recurrence relations -- 19. Hausdorff dimension bounds -- 20. Controlling the limit set -- 21. The arc case - - 22. Further symmetries of the tiling -- 23. The forest case -- 24. The cantor set case -- 25. Dynamics in the arc case -- 26. Computational methods -- 27. The calculations -- 28. The raw data-- Bibliography.
520 _aThis book introduces a general method for constructing polytope exchange transformations in higher dimensions and then studies the simplest example of the construction in detail. The simplest case is a 1-parameter family of polygon exchange transformations that turns out to be closely related to outer billiards on semi-regular octagons. The 1-parameter family admits a complete renormalization scheme, and this structure allows for a fairly complete analysis both of the system and of outer billiards on semi-regular octagons. The material in this book was discovered through computer experimentation. On the other hand, the proofs are traditional, except for a few rigorous computer-assisted calculations.
650 0 _aPolytopes.
650 0 _aGeometry.
650 7 _aDynamical systems and ergodic theory -- Low-dimensional dynamical systems -- Universality, renormalization.
942 _2ddc
_cBK
999 _c419031
_d419031