000 | 01333cam a22002417i 4500 | ||
---|---|---|---|
001 | 136238 | ||
003 | ISI Library, Kolkata | ||
005 | 20151028131707.0 | ||
008 | 150319s2014 enka b 001 0 eng d | ||
020 | _a9781107044241 | ||
040 | _aISI Library | ||
082 | 0 | 4 |
_a512.62 _223 _bL531 |
100 | 1 | _aLeinster, Tom. | |
245 | 1 | 0 |
_aBasic category theory / _cTom Leinster. |
260 |
_aCambridge : _bCambridge University Press, _c2014. |
||
300 |
_aviii, 183 p. : _billustrations ; _c24 cm. |
||
490 | 0 |
_aCambridge studies in advanced mathematics ; _v143 |
|
500 | _aIncludes indexes. | ||
505 | 0 | _a1. Categories, functors and natural transformations -- 2. Adjoints -- 3. Interlude on sets -- 4. Representables -- 5. Limits -- 6. Adjoints, representables and limits -- Appendix: Proof of the general adjoint functor theorem-- Further reading-- Index of notation-- Index. | |
520 | _aAt the heart of this short introduction to category theory is the idea of a universal property, important throughout mathematics. After an introductory chapter giving the basic definitions, separate chapters explain three ways of expressing universal properties: via adjoint functors, representable functors, and limits. A final chapter ties all three together. | ||
650 | 0 | _aCategories (Mathematics) | |
942 |
_2ddc _cBK |
||
999 |
_c419507 _d419507 |