000 01333cam a22002417i 4500
001 136238
003 ISI Library, Kolkata
005 20151028131707.0
008 150319s2014 enka b 001 0 eng d
020 _a9781107044241
040 _aISI Library
082 0 4 _a512.62
_223
_bL531
100 1 _aLeinster, Tom.
245 1 0 _aBasic category theory /
_cTom Leinster.
260 _aCambridge :
_bCambridge University Press,
_c2014.
300 _aviii, 183 p. :
_billustrations ;
_c24 cm.
490 0 _aCambridge studies in advanced mathematics ;
_v143
500 _aIncludes indexes.
505 0 _a1. Categories, functors and natural transformations -- 2. Adjoints -- 3. Interlude on sets -- 4. Representables -- 5. Limits -- 6. Adjoints, representables and limits -- Appendix: Proof of the general adjoint functor theorem-- Further reading-- Index of notation-- Index.
520 _aAt the heart of this short introduction to category theory is the idea of a universal property, important throughout mathematics. After an introductory chapter giving the basic definitions, separate chapters explain three ways of expressing universal properties: via adjoint functors, representable functors, and limits. A final chapter ties all three together.
650 0 _aCategories (Mathematics)
942 _2ddc
_cBK
999 _c419507
_d419507