000 | 01554nam a22002415i 4500 | ||
---|---|---|---|
001 | 136439 | ||
003 | ISI Library, Kolkata | ||
005 | 20160113125139.0 | ||
008 | 150610s2015 nyu 000 0 eng | ||
020 | _a9783319100876 (alk. paper) | ||
040 | _aISI Library | ||
082 | 0 | 4 |
_a516.36 _223 _bM688 |
100 | 1 | _aMochizuki, Takuro. | |
245 | 1 | 0 |
_aMixed twistor d-modules / _cTakuro Mochizuki. |
260 |
_aSwitzerland : _bSpringer, _c2015. |
||
300 |
_axx, 487 p. ; _c24 cm. |
||
490 | 0 |
_aLecture notes in mathematics ; _v2125 |
|
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _a1. Introduction -- 2. Preliminary -- 3. Canonical prolongations -- 4. Gluing and specialization of r-triples -- 5. Gluing of good-KMS r-triples -- 6. Preliminary for relative monodromy filtrations -- 7. Mixed twistor D-modules -- 8. Infinitesimal mixed twistor modules -- 9. Admissible mixed twistor structure and variants -- 10. Good mixed twistor D-modules -- 11. Some basic property -- 12. d-Triples and their functoriality-- 13. Dual and real structure of mixed twistor D-modules -- 14. Algebraic mixed twistor D-modules and their derived categoruy -- 15. Good systems of ramified irregular values-- References-- Index. | |
520 | _aThe theory of mixed twistor D-modules is one of the ultimate goals in the study suggested by Simpson's Meta Theorem, and it would form a foundation for the Hodge theory of holonomic D-modules which are not necessarily regular singular. | ||
650 | 0 | _aD-modules. | |
942 |
_2ddc _cBK |
||
999 |
_c420420 _d420420 |