000 | 01932cam a2200301 i 4500 | ||
---|---|---|---|
001 | 136732 | ||
003 | ISI Library, Kolkata | ||
005 | 20160406153632.0 | ||
008 | 150219s2015 riu b 001 0 eng | ||
020 | _a9781470420246 (alk. paper) | ||
040 |
_aISI Library _beng |
||
082 | 0 | 4 |
_a510MS _223 _bAm512 |
100 | 1 | _aEtingof, Pavel. | |
245 | 1 | 0 |
_aTensor categories / _cPavel Etingof...[et al.]. |
260 |
_aProvidence : _bAmerican Mathematical Society, _c2015. |
||
300 |
_axvi, 343 p. ; _c27 cm. |
||
490 | 0 |
_aMathematical surveys and monographs ; _vv 205. |
|
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _a1. Abelian categories -- 2. Monoidal categories -- 3. Z₊-rings -- 4. Tensor categories -- 5. Repreentation categories of Hopf algebras -- 6. Finite tensor categories -- 7. Module categories -- 8. Braided categories -- 9. Fusion categories -- Bibliography -- Index. | |
520 | _aThis book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter. | ||
650 | 0 | _aAlgebraic topology. | |
650 | 0 | _aTensor fields. | |
650 | 0 | _aHopf algebras. | |
700 | 1 |
_aGelaki, Shlomo, _eauthor |
|
700 | 1 |
_aNikshych, Dmitri, _eauthor |
|
700 | 1 |
_aOstrik, Victor. _eauthor |
|
942 |
_2ddc _cBK |
||
999 |
_c420762 _d420762 |