000 | 02039cam a22002898i 4500 | ||
---|---|---|---|
001 | 136733 | ||
003 | ISI Library, Kolkata | ||
005 | 20160406154519.0 | ||
008 | 150731s2015 riu b 001 0 eng | ||
020 | _a9781470417376 (alk. paper) | ||
040 |
_aISI Library _beng |
||
082 | 0 | 4 |
_a510MS _223 _bAm512 |
100 | 1 | _aOzsvath, Peter S. | |
245 | 1 | 0 |
_aGrid homology for knots and links / _cPeter S. Ozsvath, Andras I. Stipsicz and Zoltan Szabo. |
260 |
_aProvidence : _bAmerican Mathematical Society, _c2015. |
||
300 |
_ax, 410 p. : _billustrations ; _c27 cm. |
||
490 | 0 |
_aMathematical surveys and monographs ; _vv 208. |
|
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _a1. Introduction -- 2. Knots and links in S3 -- 3. Grid diagrams -- 4. Grid homology -- 5. The invariance of grid homology -- 6. The unknotting number and tau -- 7. Basic properties of grid homology -- 8. The slice genus and tau -- 9. The oriented skein exact sequence -- 10. Grid homologies of alternating knots -- 11. Grid homology for links -- 12. Invariants of Legendrian and transverse knots -- 13. The filtered grid complex -- 14. More on the filtered chain complex -- 15. Grid homology over the integers -- 16. The holomorphic theory -- 17. Open problems -- Appendixes -- Bibliography -- Index. | |
520 | _aThe book gives a self-contained treatment of knot Floer homology from the point of view of grid diagrams. Applications include computations of the unknotting number and slice genus of torus knots (asked first in the 1960s and settled in the 1990s), and tools to study variants of knot theory in the presence of a contact structure. Additional topics are presented to prepare readers for further study in holomorphic methods in low-dimensional topology, especially Heegaard Floer homology. | ||
650 | 0 | _aKnot theory. | |
650 | 0 | _aLink theory. | |
650 | 0 | _aHomology theory. | |
700 | 1 |
_aStipsicz, Andras I., _eauthor |
|
700 | 1 |
_aSzabo, Zoltan, _eauthor |
|
942 |
_2ddc _cBK |
||
999 |
_c420763 _d420763 |