000 | 01979cam a22002898i 4500 | ||
---|---|---|---|
001 | 136736 | ||
003 | ISI Library, Kolkata | ||
005 | 20160407153006.0 | ||
008 | 150722s2015 riu b 001 0 eng | ||
020 | _a9781470425586 (alk. paper) | ||
040 |
_aISI Library _beng |
||
082 | 0 | 4 |
_a510MS _223 _bAm512 |
100 | 1 | _aBogachev, Vladimir I. | |
245 | 1 | 0 |
_aFokker-Planck-Kolmogorov equations / _cVladimir I. Bogachev...[et al.]. |
260 |
_aProvidence : _bAmerican Mathematical Society, _c2015. |
||
300 |
_axii, 479 p. ; _c26 cm. |
||
490 | 0 |
_aMathematical surveys and monographs ; _vv 207. |
|
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _a1. Stationary Fokker-Planck-Kolmogorov Equations -- 2. Existence of Solutions -- 3. Global Properties of Densities -- 4. Uniqueness Problems -- 5. Associated Semigroups -- 6. Parabolic Fokker-Planck-Kolmogorov Equations -- 7. Global Parabolic Regularity and Upper Bounds -- 8. Parabolic Harnack Inequalities and Lower Bounds -- 9. Uniqueness of Solutions to Fokker-Planck-Kolmogorov Equations -- 10. The Infinite-Dimensional Case -- Bibliography -- Subject index. | |
520 | _aThis book gives an exposition of the principal concepts and results related to second order elliptic and parabolic equations for measures, the main examples of which are Fokker-Planck-Kolmogorov equations for stationary and transition probabilities of diffusion processes. Existence and uniqueness of solutions are studied along with existence and Sobolev regularity of their densities and upper and lower bounds for the latter. The target readership includes mathematicians and physicists whose research is related to diffusion processes as well as elliptic and parabolic equations. | ||
650 | 0 | _aFokker-Planck equation. | |
650 | 0 | _aStochastic differential equations. | |
700 | 1 | _aKrylov, Nikolai V. | |
700 | 1 | _aRockner, Michael. | |
700 | 1 | _aShaposhnikov, Stanislav V. | |
942 |
_2ddc _cBK |
||
999 |
_c420766 _d420766 |