000 | 01867cam a2200277 i 4500 | ||
---|---|---|---|
001 | 136737 | ||
003 | ISI Library, Kolkata | ||
005 | 20160407153816.0 | ||
008 | 141218m20159999riua b 001 0 eng | ||
020 | _a9781470421939 | ||
040 |
_aISI Library _beng |
||
082 | 0 | 4 |
_a510MS _223 _bAm512 |
100 | 1 | _aArtstein-Avidan, Shiri. | |
245 | 1 | 0 |
_aAsymptotic geometric analysis / _cShiri Artstein-Avidan, Apostolos Giannopoulos and Vitali D. Milman. |
260 |
_aProvidence : _bAmerican Mathematical Society, _c2015. |
||
300 |
_axix, 451 p. : _billustrations ; _c26 cm. |
||
490 | 0 |
_aMathematical surveys and monographs ; _vv 202. |
|
504 | _aIncludes bibliographical references and indexes. | ||
505 | 0 | _a1. Convex bodies: Classical geometric inequalities -- 2. Classical positions of convex bodies -- 3. Isomorphic isoperimetric inequalities and concentration of measure -- 4. Metric entropy and covering numbers estimates -- 5. Almost Euclidean subspaces of finite dimensional normed spaces -- 6. The $\ell$-position and the Rademacher projection -- 7. Proportional theory -- 8. M-position and the reverse Brunn-Minkowski inequality -- 9. Gaussian approach -- 10. Volume distribution in convex bodies -- Appendix A. Elementary convexity -- Appendix B. Advanced convexity -- Bibliography -- Subject index -- Author index. | |
520 | _aPresents the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. A central theme in this book is the interaction of randomness and pattern. The book is intended for graduate students and researchers who want to learn about this exciting subject. | ||
650 | 0 | _aGeometric analysis. | |
650 | 0 | _aFunctional analysis. | |
700 | 1 |
_aGiannopoulos, Apostolos, _eauthor |
|
700 | 1 |
_aMilman, Vitali D., _eauthor |
|
942 |
_2ddc _cBK |
||
999 |
_c420767 _d420767 |