000 02350cam a2200301 i 4500
001 137673
003 ISI Library, Kolkata
005 20170516130047.0
008 150921s2016 riu b 001 0 eng
020 _a9781470424084
040 _aISI Library
082 0 4 _a510MS
_223
_bAm512
100 1 _aBell, Jason P.,
_eauthor
245 1 0 _aDynamical Mordell-Lang conjecture /
_cJason P. Bell, Dragos Ghioca and Thomas J. Tucker.
260 _aProvidence :
_bAmerican Mathematical Society,
_c©2016.
300 _axiii, 280 pages ;
_c26 cm.
490 0 _aMathematical surveys and monographs ;
_vv 210.
504 _aIncludes bibliographical references and index.
505 0 _a1. Introduction -- 2. Background material -- 3. The dynamical mordell-lang problem -- 4. A geometric Skolem-Mahler-Lech theorem -- 5. Linear relations between points in polynomial orbits -- 6. Parameterization of orbits -- 7. The split case in the dynamical mordell-ang conjecture -- 8. Heuristics for avoiding ramification -- 9. Higher dimensional results -- 10. Additional results towards the dynamical mordell-lang conjecture -- 11. Sparse sets in the dynamical mordell-lang conjecture -- 12. Denis-mordell-lang conjecture -- 13. Dynamical mordell-lang conjecture in positive characteristic -- 14. Related problems in arithmetic dynamics -- 15. Future directions.
520 _aThe Dynamical Mordell-Lang Conjecture is an analogue of the classical Mordell-Lang conjecture in the context of arithmetic dynamics. It predicts the behavior of the orbit of a point $x$ under the action of an endomorphism $f$ of a quasiprojective complex variety $X$. More precisely, it claims that for any point $x$ in $X$ and any subvariety $V$ of $X$, the set of indices $n$ such that the $n$-th iterate of $x$ under $f$ lies in $V$ is a finite union of arithmetic progressions. In this book the authors present all known results about the Dynamical Mordell-Lang Conjecture, focusing mainly on a $p$-adic approach which provides a parametrization of the orbit of a point under an endomorphism of a variety.
650 0 _aMordell conjecture.
650 0 _aAlgebraic curves.
650 0 _aArithmetical algebraic geometry.
650 0 _aAlgebraic geometry.
700 1 _aGhioca, Dragos,
_eauthor
700 1 _aTucker, Thomas J.,
_eauthor
942 _2ddc
_cBK
999 _c423571
_d423571