000 | 02350cam a2200301 i 4500 | ||
---|---|---|---|
001 | 137673 | ||
003 | ISI Library, Kolkata | ||
005 | 20170516130047.0 | ||
008 | 150921s2016 riu b 001 0 eng | ||
020 | _a9781470424084 | ||
040 | _aISI Library | ||
082 | 0 | 4 |
_a510MS _223 _bAm512 |
100 | 1 |
_aBell, Jason P., _eauthor |
|
245 | 1 | 0 |
_aDynamical Mordell-Lang conjecture / _cJason P. Bell, Dragos Ghioca and Thomas J. Tucker. |
260 |
_aProvidence : _bAmerican Mathematical Society, _c©2016. |
||
300 |
_axiii, 280 pages ; _c26 cm. |
||
490 | 0 |
_aMathematical surveys and monographs ; _vv 210. |
|
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _a1. Introduction -- 2. Background material -- 3. The dynamical mordell-lang problem -- 4. A geometric Skolem-Mahler-Lech theorem -- 5. Linear relations between points in polynomial orbits -- 6. Parameterization of orbits -- 7. The split case in the dynamical mordell-ang conjecture -- 8. Heuristics for avoiding ramification -- 9. Higher dimensional results -- 10. Additional results towards the dynamical mordell-lang conjecture -- 11. Sparse sets in the dynamical mordell-lang conjecture -- 12. Denis-mordell-lang conjecture -- 13. Dynamical mordell-lang conjecture in positive characteristic -- 14. Related problems in arithmetic dynamics -- 15. Future directions. | |
520 | _aThe Dynamical Mordell-Lang Conjecture is an analogue of the classical Mordell-Lang conjecture in the context of arithmetic dynamics. It predicts the behavior of the orbit of a point $x$ under the action of an endomorphism $f$ of a quasiprojective complex variety $X$. More precisely, it claims that for any point $x$ in $X$ and any subvariety $V$ of $X$, the set of indices $n$ such that the $n$-th iterate of $x$ under $f$ lies in $V$ is a finite union of arithmetic progressions. In this book the authors present all known results about the Dynamical Mordell-Lang Conjecture, focusing mainly on a $p$-adic approach which provides a parametrization of the orbit of a point under an endomorphism of a variety. | ||
650 | 0 | _aMordell conjecture. | |
650 | 0 | _aAlgebraic curves. | |
650 | 0 | _aArithmetical algebraic geometry. | |
650 | 0 | _aAlgebraic geometry. | |
700 | 1 |
_aGhioca, Dragos, _eauthor |
|
700 | 1 |
_aTucker, Thomas J., _eauthor |
|
942 |
_2ddc _cBK |
||
999 |
_c423571 _d423571 |