000 | 01525cam a2200289 i 4500 | ||
---|---|---|---|
001 | 137759 | ||
003 | ISI Library, Kolkata | ||
005 | 20170818152406.0 | ||
008 | 160720s2016 nyu b 001 0 eng | ||
020 | _a9783110463446 | ||
040 | _aISI Library | ||
082 | 0 | 4 |
_a332.0151923 _223 _bF668 |
100 | 1 |
_aFollmer, Hans, _eauthor |
|
245 | 1 | 0 |
_aStochastic finance : _ban introduction in discrete time by / _cHans Follmer and Alexander Schied. |
250 | _a4th rev ed. | ||
260 |
_aBerlin : _bDe Gruyter, _c©2016. |
||
300 |
_axii, 596 pages ; _billustrations : _c24 cm. |
||
490 | 0 | _aDe Gruyter graduate | |
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _aPart I: Mathematical finance in one period -- 1. Arbitrage theory -- 2. Preferences -- 3. Optimality and equilibrium -- 4. Monetary measures of risk -- Part II: Dynamic hedging -- 5. Dynamic arbitrage theory -- 6. American contingent claims -- 7. Superhedging -- 8. Efficient hedging -- 9. Hedging under constraints -- 10. Minimizing the hedging error -- 11. Dynamic risk measures -- Appendix. | |
520 | _aAn introduction to the mathematics of finance, based on stochastic models in discrete time. It studies simple one-period models, and develops the idea of dynamic hedging of contingent claims in a multiperiod framework. | ||
650 | 0 |
_aFinance _xStatistical methods. |
|
650 | 0 | _aStochastic analysis. | |
650 | 0 | _aProbabilities. | |
700 | 1 |
_aSchied, Alexander, _eauthor |
|
942 |
_2ddc _cBK |
||
999 |
_c423996 _d423996 |