000 02193cam a2200289 i 4500
001 138304
003 ISI Library, Kolkata
005 20230720020004.0
008 160804t20172017riua b 001 0 eng
020 _a9781470434656 (alk. paper)
040 _aISI Library
082 0 4 _a510MS
_223
_bAm512
100 1 _aDas, Tushar,
_eauthor
245 1 0 _aGeometry and dynamics in Gromov hyperbolic metric spaces :
_bwith an emphasis on non-proper settings /
_cTushar Das, David Simmons and Mariusz Urbanski.
260 _aProvidence :
_bAmerican Mathematical Society,
_c©2017.
300 _axxxv, 281 pages :
_billustrations ;
_c27 cm.
490 0 _aMathematical surveys and monographs ;
_vv 218.
504 _aIncludes bibliographical references and index.
505 0 _a1. Introduction and overview -- Part 1. Preliminaries. 2. Algebraic hyperbolic spaces -- 3. R-trees, CAT( -1) spaces, and Gromov hyperbolic metric spaces -- 4. More about the geometry of hyperbolic metric spaces -- 5. Discreteness -- 6. Classification of isometries and semigroups -- 7. Limit sets -- Part 2. The Bishop-Jones theorem. 8. The modified Poincare exponent -- 9. Generalization of the Bishop-Jones theorem -- Part 3. Examples. 10. Schottky products -- 11. Parabolic groups -- 12.Geometrically finite and convex-cobounded groups -- 13. Counterexamples -- 14. R-trees and their isometry groups -- Part 4. Patterson-Sullivan theory. 15. Conformal and quasiconformal measures -- 16. Patterson-Sullivan theorem for groups of divergence type -- 17. Quasiconformal measures of geometrically finite groups.
520 _aPresents the foundations of the theory of groups and semigroups acting isometrically on Gromov hyperbolic metric spaces. Particular emphasis is paid to the geometry of their limit sets and on behaviour not found in the proper setting. The authors provide a number of examples of groups which exhibit a wide range of phenomena not to be found in the finite-dimensional theory.
650 0 _aHyperbolic geometry.
650 0 _aHyperbolic spaces.
650 0 _aMetric spaces.
700 1 _aSimmons, David,
_eauthor
700 1 _aUrbański, Mariusz.
_eauthor
942 _2ddc
_cBK
_02
999 _c424429
_d424429