000 02085cam a22002658i 4500
001 138311
003 ISI Library, Kolkata
005 20180511120813.0
008 170412s2017 riu b 001 0 eng
020 _a9780821875544 (alk. paper)
040 _aISI Library
082 0 4 _a510MS
_223
_bAm512
100 1 _aBonk, Mario,
_eauthor
245 1 0 _aExpanding Thurston maps /
_cMario Bonk and Daniel Meyer.
260 _aProvidence :
_bAmerican Mathematical Society,
_c©2017.
300 _axv, 478 pages :
_billustrations ;
_c27 cm.
490 0 _aMathematical surveys and monographs ;
_vv 225.
504 _aIncludes bibliographical references and index.
505 0 _a1. Introduction -- 2. Thurston maps -- 3. Lattes maps -- 4. Quasiconformal and rough geometry -- 5. Cell decompositions -- 6.Expansion -- 7. Thurston maps with two or three postcritical points -- 8. Visual metrics -- 9. Symbolic dynamics -- 10. Tile graphs -- 11. Isotopies -- 12. Subdivisions -- 13. Quotients of Thurston maps -- 14. Combinatorially expanding Thurston maps -- 15. Invariant curves -- 16. The combinatorial expansion factor -- 17. The measure of maximal entropy -- 18. The geometry of the visual sphere -- 19. Rational Thurston maps and Lebesgue measure -- 20. A combinatorial characterization of Lattes maps -- 21. Outlook and open problems -- Appendix A -- Bibliography -- Index.
520 _aThis monograph is devoted to the study of the dynamics of expanding Thurston maps under iteration. A Thurston map is a branched covering map on a two-dimensional topological sphere such that each critical point of the map has a finite orbit under iteration. It is called expanding if, roughly speaking, preimages of a fine open cover of the underlying sphere under iterates of the map become finer and finer as the order of the iterate increases. Every expanding Thurston map gives rise to a fractal space, called its visual sphere.
650 0 _aAlgebraic topology.
650 0 _aMappings (Mathematics)
700 1 _aMeyer, Daniel,
_eauthor
942 _2ddc
_cBK
999 _c424601
_d424601