000 | 02085cam a22002658i 4500 | ||
---|---|---|---|
001 | 138311 | ||
003 | ISI Library, Kolkata | ||
005 | 20180511120813.0 | ||
008 | 170412s2017 riu b 001 0 eng | ||
020 | _a9780821875544 (alk. paper) | ||
040 | _aISI Library | ||
082 | 0 | 4 |
_a510MS _223 _bAm512 |
100 | 1 |
_aBonk, Mario, _eauthor |
|
245 | 1 | 0 |
_aExpanding Thurston maps / _cMario Bonk and Daniel Meyer. |
260 |
_aProvidence : _bAmerican Mathematical Society, _c©2017. |
||
300 |
_axv, 478 pages : _billustrations ; _c27 cm. |
||
490 | 0 |
_aMathematical surveys and monographs ; _vv 225. |
|
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _a1. Introduction -- 2. Thurston maps -- 3. Lattes maps -- 4. Quasiconformal and rough geometry -- 5. Cell decompositions -- 6.Expansion -- 7. Thurston maps with two or three postcritical points -- 8. Visual metrics -- 9. Symbolic dynamics -- 10. Tile graphs -- 11. Isotopies -- 12. Subdivisions -- 13. Quotients of Thurston maps -- 14. Combinatorially expanding Thurston maps -- 15. Invariant curves -- 16. The combinatorial expansion factor -- 17. The measure of maximal entropy -- 18. The geometry of the visual sphere -- 19. Rational Thurston maps and Lebesgue measure -- 20. A combinatorial characterization of Lattes maps -- 21. Outlook and open problems -- Appendix A -- Bibliography -- Index. | |
520 | _aThis monograph is devoted to the study of the dynamics of expanding Thurston maps under iteration. A Thurston map is a branched covering map on a two-dimensional topological sphere such that each critical point of the map has a finite orbit under iteration. It is called expanding if, roughly speaking, preimages of a fine open cover of the underlying sphere under iterates of the map become finer and finer as the order of the iterate increases. Every expanding Thurston map gives rise to a fractal space, called its visual sphere. | ||
650 | 0 | _aAlgebraic topology. | |
650 | 0 | _aMappings (Mathematics) | |
700 | 1 |
_aMeyer, Daniel, _eauthor |
|
942 |
_2ddc _cBK |
||
999 |
_c424601 _d424601 |