000 | 01497nam a22002777a 4500 | ||
---|---|---|---|
003 | ISI Library, Kolkata | ||
005 | 20250506155845.0 | ||
008 | 250502b |||||||| |||| 00| 0 eng d | ||
020 | _a9782379052019 | ||
040 |
_aISI Library _bEnglish |
||
082 |
_223 _a512.2 _bM357 |
||
100 |
_aMarquis,T _eauthor |
||
245 | 1 | 0 |
_aStructure of conjugacy classes in Coxeter groups/ _cT. Marquis |
260 |
_aMarseille: _bSociété Mathématique de France, _c2025 |
||
300 |
_aviii, 135 pages : _billustrations ; _c24 cm. |
||
490 | 0 |
_aAstérisque _v457 |
|
504 | _aIncludes bibliographies and indexes. | ||
505 | _aIntroduction -- Priliminaries -- Cyclic shift classes -- Elements of finite order -- The structural conjugation graph -- Combinatorial minimal displacement sets -- Proof of theorem B -- The P-splitting of an element -- Indefinite coxeter groups -- Affine coxeter group. | ||
520 | _aThis paper gives a definitive solution to the problem of describing conjugacy classes in arbitrary Coxeter groups in terms of cyclic shifts. In this paper, we compute explicitely the structural conjugation graph associated to any (possibly twisted) conjugacy class in W, and show in particular that it is connected (that is, any two conjugate elements of W differ only by a sequence of cyclic shifts and K-conjugations). | ||
650 | 4 | _aGroup theory | |
650 | 4 | _aConjugacy classes | |
650 | 4 | _aCoxeter groups | |
650 | 4 | _aCyclic shifts | |
830 | 0 | _aAstérisque | |
942 |
_2ddc _cBK |
||
999 |
_c437037 _d437037 |